

Research on mining the online community: a case of Open Source
Software community

Luo Yan

Sydney Institute of Language and Commerce
Shanghai University

20 Chengzhong RD,Shanghai
China

luoyan@shu.edu.cn

Abstract: - The development of Open Source Software (OSS) projects is a process of collective innovation in
the environment of online community. The paper addresses the challenge of efficiently mining data from OSS
web repositories and building models to study OSS community features. Data collection for OSS community
study is nontrivial since most OSS projects are developed by distributed developers using web tools. We design
a mining process which combines web mining and database mining together to identify, extract, filter and
analyze data. We address and analyze the difficulty of mining OSS community data. Our work provides a
general solution for researchers to implement advanced techniques, such as web mining, data mining, statistics,
and algorithms to collect and analyze online community data.

Key-Words: - Online community, Data mining, Open source software

1 Introduction
Online communities can be defined as a social
relationship aggregation, facilitated by Internet-
based technology, in which users communicate and
build personal relationships [1]. They allow the
creation of weak links among geographically
dispersed individual who regularly participates in
the community. Examples of online communities
can be found on fields like education [2] and [3],
software development [4] or consumer behavior [5].

Most OSS projects are developed in a distributed
and decentralized environment. The number of
developers of OSS projects ranges from several to
thousands of people, who are usually not physically
located in the same place. They rarely meet face to
face. For example, the Linux development team
consists of more than 3, 000 developers from over
90 countries [6]. The development of OSS projects
relies on the online communities, which are built on
relationships among members, being their final
objective sharing knowledge and improving the
underlying project.

OSS communities contain abundant information
about projects and their developers. Although these
OSS communities can be treated as attractive data
sources for researchers, difficulties exist in
collecting data. They may not have access to the
backend databases, in which case, tools are needed
to extract, download, parse, and port web data. The

researchers must eliminate irrelevant or unnecessary
items in the extracted data. Furthermore,
overlapping data or incomplete data also exists.
Some users may use multiple IDs or an ID may be
used by multiple users. The researchers also need to
deal with missing and dirty data. For example,
dumped and defunct projects must be distinguished
from normal projects [7]. It is imperative for
researchers to improve data quality and accuracy.

There are two ways to collect data from OSS
communities. In most studies, the collecting process
is based on retrieving web pages or files (usually by
a web crawler), parsing the downloaded pages, and
analyzing data for different research goals. Robles et
al. [8] design a data collecting system, GlueTheos,
which includes modules to download raw data from
CVS repositories, analyze the source code and store
data as XML files or in a SQL database. Some
researchers focus on gathering, sharing, and storing
OSS development data for academic research [9, 10].
These systems use a crawler to collect OSS project
and developer information from OSS communities
and provide ready-to-use databases for researchers.
Jensen et al. [11] explore mining techniques for
discovering OSS development processes by
analyzing text, links, usage, and update patterns
from OSS communities. Crob et al. [12] discuss
selecting and extracting OSS communities’ server

WSEAS TRANSACTIONS on COMPUTERS Luo Yan

E-ISSN: 2224-2872 233 Issue 6, Volume 12, June 2013

log files and use data mining techniques to analyze
those log files.

Collecting data by web crawling has several
disadvantages in the process of mining OSS
communities. First, a web crawler can hardly be
used for different OSS communities’ web sites
because those sites have different web structures or
a site may change its structure. Second, because
crawling is always time- and resource- consuming,
downloading data by a web crawler may affect the
performance of the downloaded site and may result
in a denial of service for regular users. Third,
historic data are often unavailable to web crawlers
because an OSS community’s web site usually only
contains current information. The other way to
collect data is to get a copy of a backend database
dump directly from the OSS communities’ web sites.
Although direct access to the data dump can avoid
those disadvantages of web crawling or spidering,
this approach still poses several problems. The lack
of documentation about data dumps may require a
huge effort to understand schemas and tables.
Unlike data listed directly on web pages, names and
meaning of table fields may be confusing and
obscured and the interpretation may not be easy.
Moreover, data processing and cleaning are
complicated due to the fact that there are noisier and
duplicated data stored in databases.

This paper addresses the challenge of efficiently
mining data from OSS communities. Most previous
studies focus on manually creating a web crawler to
collect data from OSS communities’ web sites based
on specific research needs. We design a mining
process which combines web mining and database
mining to identify, extract, filter and analyze data.
Furthermore, OSS communities’ database schemas
and tables are described to help researchers
understand data dump structures. Our work provides
a general solution for researchers to implement
advanced techniques, such as web mining, data
mining, statistics, and algorithms to collect and
analyze OSS communities’ repository data.

The rest of this chapter is organized as follows:
Section 2 describes OSS communities’ data sources
and data features. Section 3 presents our mining
process and gives an example of using a web
crawler to collect data. Section 4 focuses on design
and implementation of data collection from OSS
community. Conclusions and future work are given
in Section 5.

2 Data Sources
We collect our data from SourceForge - the world's
largest Open Source software development and
collaboration community. With over 324, 000
projects and over 3.4 million registered users as of
March 2013, SourceForge.net, sponsored by VA
Software, offers a centralized place for OSS
developers to control and manage OSS development
by providing project web servers, trackers, mailing
lists, discussion boards, and software releases, etc.
Users can download and use those projects for free
under an Open Source license. This community
provides highly detailed information about projects
and developers, including project characteristics,
developers' activities, and “top ranked” developers.
By mining this OSS community, we can explore
developers' behaviors and projects' growth.

2.1 Project Information
SourceForge provides a summary for each project,
including its name, registered data, classification,
list of developers, and activity data. According to
the features and properties of a project, SourceForge
groups each project into different categories, called
a software map. Those categories have multi-level
subcategories. A project can be classified into
different subcategories in the same top category.
The top level category includes database
environment, development status (planning, pre-
alpha, alpha, beta, production/stable, mature,
inactive), intended audience, license, operating
system, programming Language, topic, translations
(natural language the project is based on), and user
interface. Fig.1 shows the first level subcategories
of SourceForge projects topics.

Fig.1. SourceForge topics hierarchy. This graph
only shows the first level of the topics hierarchy
tree.

The tracker system is a tool provided by
SourceForge.net that allows developers to develop,
collaborate, and support software. By using trackers,
developers and users can report and manage bug

WSEAS TRANSACTIONS on COMPUTERS Luo Yan

E-ISSN: 2224-2872 234 Issue 6, Volume 12, June 2013

reports, patch submissions, support requests, feature
requests. Each project may have multiple trackers.
Each tracker keeps total and open counts, summary
of a request, open date, update date, current status
(open, close), submitter ID, and assignee ID.

Some projects may maintain forums for different
types of purposes. Forums provide a convenient
communication for developers and users to raise,
discuss, and answer questions. SourceForge records
each message, as well as its topic starter, total
replies, and follow-ups.

For each project, you can find historical data of
its activities, such as its rank, total page views, total
downloads, and posts on forums. The history of file
releases is also available, which provides
information about the file release time, version, size,
and package names.

2.2 Member and User Information
A project has a list of administrators and developers.
They are registered members of SourceForge. Each
project has one or multiple project administrators,
who are often the initiators of that project. These
project administrators usually control the source
code change and maintain project membership.
Besides project administrators, each project may
have developers who work on that project but have
no control privileges. These developers must be
registered users on SourceForge and granted
membership by project administrators. Because both
project administrators and developers are registered
members, SourceForge keeps records of their user
IDs, user names, real names, contact information,
and projects they participate on.

There are a large number of registered users on
SourceForge who do not belong to any projects.
These users may or may not have activities on some
projects. We can track their information by checking
a project's trackers and forums.

However, SourceForge is also visited by a large
number of other unregistered end-users, who may
download software, report bugs, and post messages
on forums. Since they are not registered members of
SourceForge, we have no way to know their
quantities and identifications although they may be
very important for the development of a project.

2.3 Data Limitation
Although we can get abundant data from OSS
community hosting web sites, the actual data
collection process has been proven to be challenging.
An OSS community web site can be accessed by

millions of developers and users. Each person has
her own natural language, input format, and other
preferences. Moreover, some developers decide to
move their project to an OSS community after the
project is developed for some time, while some
developers may decide to stop the development of
their project or move it out of an OSS community
and build their own project site. All these actions
taken by developers or users can lead to difficulties
in the data collection process. In summary, data
collected from OSS communities may include the
following dirty or noisy data:

1. Missing data: Data collected may be
incomplete. For example, since SourceForge started
in November 1999, for those projects which started
earlier, we could not get their history data earlier
than that date.

2. Outliers: Abnormal values may be contained
in the collected data. Some projects are dumped into
SourceForge. These projects should be identified
because they will cause inaccuracy in research
studies if we treat them the same way as other
projects.

3. Anonymous data: Some data may have no
identification which poses difficulty in analyzing
them. For example, users are allowed to use a user
ID called “nobody” to post messages on
SourceForge. We have no way to know how many
different users are behind those “nobody” activities.
When we include this data in data analysis, the way
we treat it (delete all “nobody”, treat each one as a
different individual, or treat all as one individual)
will lead to huge difference in results.

3 Data mining

3.1 Mining Process
In order to explore the OSS community data, we
need to identify, extract, filter and analyze data
resources. Our OSS community mining process
combines web retrieval, statistics, and data mining
techniques together to provide information for our
research. The mining process, as shown in Fig 2,
consists of four phases: identification and extraction,
cleansing and preprocessing, analysis, and report.

The first phase is to select appropriate content
from the data sources. The OSS community data
sources may be web sites or data dumps. Usually, a
web site contains many web pages, such as
documentation, newsgroups, forums, mailing lists,
etc. A data dump stores a large number of tables.

WSEAS TRANSACTIONS on COMPUTERS Luo Yan

E-ISSN: 2224-2872 235 Issue 6, Volume 12, June 2013

Either web pages or database tables include relevant
and irrelevant information to our research purpose.
This phase decides which web pages or database
tables should be extracted. Different tools and
techniques will be used depending on the data
source. If data is extracted from a web site, a
crawler/spider will be used to automatically extract
specific fragments of a web document. Extracted
data from a data dump requires interpretation and
exploration of database tables. Database
management and connection tools, i.e. SQL and
JDBC, are used in our data collection from data
dumps.

Fig.2. Mining process. Data are extracted from
web pages or data dumps and stored into back-
end database; raw data in the database are
cleaned and preprocessed for later statistics,
mathematics or data mining analysis; scientific
report is based on data analysis.

The second phase converts the raw data into
cleaned data abstractions necessary for analysis. The
purpose of data cleansing and preprocessing is to
improve data quality and increase mining accuracy.
The main tasks of data cleansing consist of handling
missing values, identifying outliers, filtering out
noisy data and correcting inconsistent data. Data
cleansing eliminates irrelevant or unnecessary items
in the analyzed data. A web site can be accessed by
millions of users. Different users may use different

format when creating data. Furthermore,
overlapping data and incomplete data also exist. By
Data cleansing, errors and inconsistencies will be
detected and removed to improve the quality of data.
Data preprocessing converts data to a format
suitable for later analysis, which may include
integrating data from multiple sources into a
coherent store; scaling values of data to a range;
reducing a huge data set to a smaller representative
subset.

In the analysis phase, advanced techniques are
utilized to discover patterns. Statistics can be
applied to calculate measures such as totals and
means, etc. Data mining functions can be performed
to find dependencies and relationships. Simulation
models can be built to predict future development.
This phase gives analytical data which needs further
interpretation.

The report phase includes interpreting and
validating the potential information from patterns
offered by analysis. The objective of this task is to
gain knowledge from the information provided by
former tasks. According to their knowledge and
experience, different researchers may get different
or even opposite explanations for the same
analytical data.

3.2 OSS Community Mining
In the first stage of our OSS community study, web
mining is our main method used to collect data.
Because web data are semi-structured or even
unstructured, which cannot be manipulated by
traditional database techniques, it is imperative to
extract web data to port them into databases for
further handling. The purpose of our OSS
community mining is to extract a specific portion of
web documents useful for a research objective. Our
mining process takes web documents as input,
identifies a core fragment, and transforms that
fragment into a structured and unambiguous format
[13].

3.2.1 Web Crawler Implementation
In OSS community mining, a web crawler is
developed to help extract useful information from
OSS community resources. A web crawler is a
program which automatically traverses web sites,
downloads documents and follows links to other
pages [14]. It keeps a copy of all visited pages for
later use. Most web search engines use web crawlers
to create entries for indexing. They can also be used
in other possible applications such as page

WSEAS TRANSACTIONS on COMPUTERS Luo Yan

E-ISSN: 2224-2872 236 Issue 6, Volume 12, June 2013

validation, structural analysis and visualization,
update notification, mirroring and personal web
assistants/agents etc. [15].

We designed a web crawler shown in Fig.3,
which is implemented using Perl because Perl
provides useful modules to help web retrieval such
as HTTP communication, HTML parsing, etc. A
crawler can also be implemented in Java, Ruby, and
Python, etc.

Fig.3. A web crawler. The crawler starts with a
URL, identifies other links on the HTML page,
visits those existing links, extracts and parses
web pages. The parser includes a word extractor,
a table extractor and a link extractor.

Our crawler starts with a URL, identifies other

links on the HTML page, and visits those links,
extracts information from web pages and stores
information into databases. Thus, the crawler
consists of a URL access method, a web page parser
with some extractors, and a back-end database. The
access function of a crawler should prevent
repeatedly accessing the same web address and
should identify dead links. The parser recognizes
start tags, end tags, text and comments. The
database provides storage for extracted web
information.

The key component of our web crawler is the
parser, which includes a word extractor, a table
extractor and a link extractor. The word extractor is
used to extract word information. It should provide
a string checking function. Tables are used
commonly in web pages to visually align
information. A table extractor identifies the location
of the data in a table. A link extractor retrieves links
contained in a web page. There are two types of
links- absolute links and relative links. An absolute
link gives the full address of a web page, while a

relative link needs to be converted to a full address
by adding a prefix.

The code of web crawler as follows:

#!/usr/local/bin/perl
use lib qw(..);
use lib "/afs/nd.edu/user9/jxu1/research/webmining/jin/\
lib/HTML-TableExtract-1.08/lib";
use HTML::TableExtract;
use LWP::Simple;
use Data::Dumper;
my $str = "http://sourceforge.net/project/stats/?group_id=";

for (my $s = @ARGV[0]; $s <= @ARGV[1]; $s++){

$file = "result".$s."k.txt";
$m = ">>".$file;
print $m . "\n";

my $lo = $s."000";
my $hi = $s."999";
for (my $i = $lo; $i <= $hi; $i++){

print $i. "\n";
my $te = new HTML::TableExtract(depth=>1, count=>3,
gridmap=>0);
$url = $str . $i;
#print $url . "\n";

#my $content = system ("wget". "-o " " .$url);
my $content = get($url);
my $random = int (rand 3);
my $cmd = "sleep ".$random;
print "before ".$cmd . "\n";
system($cmd);
print "end\n";
if(defined $content){

#print $content;
}
else {

print "Error: Get failed";
}
#print ("content". "\n");
$te->parse($content);
#print ("parse" . "\n");
foreach my $ts ($te->table_states)
{

foreach $row ($ts->rows)
{

open (outfile, $m);
print outfile $i;
print outfile "|";
@a = @$row;
$length = @a;
if ($a[0] !~ /Lifespan/){
for (my $j = 0; $j < @a; $j++){
#print $a[$j];
print outfile $a[$j];
print outfile "|";

}
print outfile "\n";

}
close (outfile);
}

}
}
}

WSEAS TRANSACTIONS on COMPUTERS Luo Yan

E-ISSN: 2224-2872 237 Issue 6, Volume 12, June 2013

All project home pages in SourceForge have a
similar top-level design. Many of these pages are
dynamically generated from a database. The web
crawler uses LWP, the libwww-Perl library, to fetch
each project's homepage. CPAN has a generic
HTML parser to recognize start tags, end tags, text
and comments, etc. Because both statistical and
member information are stored in tables, the web
crawler uses an existing Perl Module called
HTML::Table Extract and string comparisons
provided by Perl to extract information. Link
extractors are used if there is more than one page of
members.

3.2.2 Web Raw Data Collection
After informing SourceForge of our plans and
receiving permission, we gathered data monthly at
SourceForge. Data is collected at the community,
project, and developer level, characterizing the
entire OSS phenomenon, across multiple numbers
of projects, investigating behaviors and mechanisms
at work at the project and developer levels. The
primary data required for this research are stored in
two tables- developers and project statistics. The

developers table, shown in Table 1, has 2 fields:
project ID and developer ID. The project statistics
table, shown in Table 2, consists of records with 9
fields: project ID, lifespan, rank, page views,
downloads, bugs, support, patches and CVS.
Because projects can have many developers and
developers can be on many projects, neither field is
a unique primary key. Thus the composite key
composed of both attributes serves as a primary key.
Each project in SourceForge is given a unique ID
when registered with SourceForge.

Table 1. MEMBERSHIP FOR EACH PROJECT

Project ID Login ID

1 agarza

1 alurkar

1 burley

1 chorizo

2 atmoshere

2 burley

2 bdsabian

Table 2. PROJECT STATISTICS

Project ID lifespan rank Page views downloads bugs support patches All trackers tasks cvs

1 1355 days 31 12,163,712 71,478 4,160 46,811 277 52,732 44 0

2 1355 days 226 4,399,238 662,961 0 53 0 62 0 14,979

3 1355 days 301 1,656,020 1,064,236 364 35 15 421 0 12,236

7 1355 days 3322 50,257 20,091 0 0 0 12 0 0

8 1355 days 2849 6,541,480 0 17 1 1 26 0 13,896

4 Data analysis
We use several data mining algorithms to analyze
the web raw data we retrieved from SourceForge by
the crawler. Among them, we use Naive Bayes,
Classification and Regression Tree (CART) for
classification, A Priori for association rules mining,
K-means and Orthogonal-Cluster for clustering.

4.1 Classification
The Naive Bayes algorithm makes predictions using
Bayes' Theorem. Naïve Bayes assumes that each
attribute is independent of others, which is not the
case in our study. For example, the “downloads”
feature is closely related to the “cvs” feature; the
“rank" feature is closely related to other features,
since it is calculated from other features.

CART builds classification and regression trees
for predicting continuous dependent variables
(regression) and categorical predictor variables
(classification). We are only interested in the
classification type of problems since the software
we are using only handles this type of problems.
Oracle's implementation of CART is called
Adaptive Bayes Network (ABN). ABN predicts
binary and multi-class targets. Thus discretizing the
target attribute is desirable.

Classification includes the following steps: build
models, test models, compute lift, and apply models.
The table “projects_build_binned” which stores the
transformed data, contains 65,000 records. We
randomly partition the table into three parts based
on the 6:3:1 criteria. Each part is for building,
testing and computing lift respectively. We call

WSEAS TRANSACTIONS on COMPUTERS Luo Yan

E-ISSN: 2224-2872 238 Issue 6, Volume 12, June 2013

these parts model-build-data, model-test-data and
lift-compute-data.

In our case, we try to predict “downloads” from
other features. As stated previously, the
“downloads” feature is binned into ten equal
buckets. We predict which buckets “downloads”
resides based on the values of other features. As
expected, the Naive Bayes algorithm is not suitable
for predicting “downloads”, since it is related to
other features, such as “cvs”. Fig.3. shows that the
accuracy of Naive Bayes is less than 10%.

Fig.3. Naive Bayes prediction for downloads. The
“downloads” is predicted based on other project's
statistics. Rows contain actual data. Columns
contain predicted data. The accuracy of Naive Bayes
is less than 10%.

While Naive Bayes performs badly on predicting
“downloads”, the ABN algorithms can predict
“downloads" quite accurately. As shown in Fig.4,
the accuracy is about 63%. At first sight, the
accuracy 63% is not attractive, but it is a good
prediction since we could only get 10% of correct
predictions without classification. The lift
computation confirms that the resulting
classification model is quite good, as shown in Fig.5.
These figures show that all records whose
“downloads" feature is 1 in just the first 20% of
records. Fig.6. shows the rules built by the ABN
classification model. As we see from the figure,
“downloads" is closely related to “cvs".

We conclude that the ABN algorithm is suitable
for predicting “downloads" in our study. The
following table compares the two algorithms,
namely, ABN and Naive Bayes. From the Table 3,
we see that ABN takes much longer time to build a
classification model, but the resulting model is
much more accurate.

Fig.4. ABN prediction for downloads. The
“download" is predicted based on other project's
statistics. Rows contain actual data. Columns
contain predicted data. The accuracy of ABN is
63%.

Fig.5. The Lift chart for ABN prediction. By using
ABN algorithm, the cumulative target of
“downloads" is 1 in just the first 20% of records,
which indicates the prediction is accurate.

Fig.6. The rules built by ABN classification. The
rule computation contains if-condition field and
classification field. “Downloads” is closely related
to “cvs”.

WSEAS TRANSACTIONS on COMPUTERS Luo Yan

E-ISSN: 2224-2872 239 Issue 6, Volume 12, June 2013

Table 3. COMPARISON OF ABN AND NAIVE
BAYES.

Name Build Time accuracy

ABN 0:19:56 63%

Naive Bayes 0:0:30 9%

4.2 Association Rules
Association rule algorithm is applied to find the
correlations between features of projects in OSS
community. The association rules mining problem
can be decomposed into two subproblems:

1.Find all combinations of items, called frequent
itemsets, whose support is greater than the minimum
support.

2.Use the frequent itemsets to generate the
association rules. For example, if AB and A are
frequent itemsets, then the rule A→B holds if the
ratio of support(AB) to support(A) is greater than
the minimum confidence.

One well known association rule mining
algorithm is called A Priori. Oracle implements this
algorithm using PL/SQL. We use the algorithm to
find correlations between features of projects. The
algorithm takes two input data- the minimum
support and the minimum confidence. We choose
0.01 for minimum support and 0.5 for minimum
confidence. Fig.7. shows the results of the
association rules mining. From the figure, we see
that the feature “all_trks", “cvs" and “downloads"
are “associated". More rules can be seen from the
above figure. Not all of the rules discovered are of
interest.

Fig.7. The rules built by A Priori. Features
“all_trks”, “cvs” and “downloads” are “associated”
because the confidence and support are greater than
their thresholds.

4.3 Clustering
Clustering is a data analysis which is used to find a
collection of similar patterns [16]. We wish to put
projects with similar features together to form
clusters. Two algorithms can be used to accomplish
this: k-means and o-cluster.

The k-means algorithm is a distance-based
clustering algorithm, which partitions the data into
predefined number of clusters. The o-cluster
algorithm is a hierarchical and grid-based algorithm.
The resulting clusters define dense areas in the
attribute space. The dimension of the attribute space
is the number of attributes involved in the clustering
algorithm. We apply the two clustering algorithms
to projects in this case study. Fig.9 and Fig.10 show
the resulting clusters and rules that define the
clusters.

Fig.8. The clusters. There are total of 50, 000
projects. They are divided into 5 groups, each of
which contains subgroups. For example, cluster 6,
which contains 8534 projects, can be divided into
group 18 and group 19.

WSEAS TRANSACTIONS on COMPUTERS Luo Yan

E-ISSN: 2224-2872 240 Issue 6, Volume 12, June 2013

Fig.9. The rules that define clusters. Statistical
features of a project are divided into 10 categories.
Clusters are formed according to categories in each
statistical feature.

5 Conclusion
The success of Open Source Software (OSS) has
attracted increased interest in many research areas.
Unlike proprietary closed software, OSS projects
are developed in a distributed and decentralized way.
The OSS community is largely composed of part-
time developers. These developers have developed a
substantial number of outstanding technical
achievements.

In this paper, we address the challenge of
efficiently mining data from OSS web repositories
and building models to study OSS community
features. Data collection for OSS community study
is nontrivial since most OSS projects are developed
by distributed developers using web tools. Most
previous studies focus on manually creating a web
crawler to collect data from OSS community. This
method is usually implemented by creating a web
crawler based on specific research goals. We design
a mining process which combines web mining and
database mining together to identify, extract, filter
and analyze data. We address and analyze the
difficulty of mining OSS community data. Our work
provides a general solution for researchers to
implement advanced techniques, such as web
mining, data mining, statistics, and algorithms to
collect and analyze online community data.

Acknowledgement
This research work is supported by Innovation
Program of Shanghai Municipal Education
Commission (serial No. 12YS018) and Humanity

and Social Science Youth Foundation of Ministry of
Education, China (No. 12YJC630136)

References:
[1] H. Rheingold. The Virtual Community:

Homesteading on the Electronic Frontier.
Addison-Wesley, Reading, MA (1993)

[2] F. Barrero, S.L. Toral, S. Gallardo. EDSPLab:
remote laboratory for experiments on DSP
applications. Internet Research, 18 (1) (2008),
pp. 79–92.

[3] S.L. Toral, F. Barrero, M.R. Martínez-Torres, S.
Gallardo, J. Lillo. Implementation of a web-
based educational tool for digital signal
processing teaching using the technological
acceptance model. IEEE Transactions on
Education, 48 (4) (2005), pp. 632–641.

[4] F. Barcellini, F. Détienne, J.-M. Burkhardt, W.
Sack. A socio-cognitive analysis of online
design discussions in an open source software
community. Interacting with Computers, 20 (1)
(2008), pp. 141–165.

[5] R.-A. Shang, Y.-C. Chen, H.-J. Liao. The value
of participation in virtual consumer
communities on brand loyalty. Internet
Research, 16 (4) (2006), pp. 398–418.

[6] J. Y. Moon and L. Sproull. Essence of
distributed work: The case of the linux kernel.
First Monday, v. 5(11), 2000.

[7] J. Howison and K. Crowston. The perils and
pitfalls of mining sourceforge. In Proceedings
of Mining Software Repositories Workshop,
Internat ional Conference on Software
Enginnering (ICSE 2004), Edinburgh, Scotland,
2004.

[8] G. Robles and R. Gonzalez-Barahona, J.and
Ghosh. Gluetheos: Automating the retrieval
and analysis of data from publicly available
software repositories. In Proceedings of the
Mining Software Repositories Workshop. 26th
International Conference on Software
Engineering, Edinburgh, Scotland, 2004.

[9] J. Howison, M. S. Conklin, and K. Crowston.
Ossmole: A collaborative repository for oss
research data and analysiss. In Proceedings of
1st International Conference on Open Source
Software, Genova, Italy, 2005.

[10] D. Weiss. A large crawl and quantitative
analysis of open source projects hosted on
sourceforge. Research report ra-001/05,
Institute of Computing Science, Poznan
university of Technology, Poland, 2005.

[11] C. Jensen and W. Scacchi. Data mining for
software process discovery in open source

WSEAS TRANSACTIONS on COMPUTERS Luo Yan

E-ISSN: 2224-2872 241 Issue 6, Volume 12, June 2013

software development communities. In Proc.
Workshop on Mining Software Repositories,
Edinburgh, Scotland, 2004.

[12] H. L. Grob, F. Bensberg, and F. Kaderali.
Controlling open source intermediaries- a web
log mining approach. In Proceedings of the
26th Int. Conf. Information Technology
Interfaces ITI 2004, Sagreb, Kroatien, 2004.

[13] L. Eikvil. Information extraction from world
wide web - a survey. Technical Report 945,
Norweigan Computing Center, 1999.

[14] M. Koster. The web robots pages.
http://info.webcrawler.com/mak/projects/robots
/robots.html, 1999.

[15] F. Crimmins. Web crawler review.
http://dev.funnelback.com/crawlerreview.html,
2001.

[16] A. K. Jain, M. N. Murty, and P. J. Flynn. Data
clustering: a review. ACM Computing Surveys,
31(3):264-323, 1999.

WSEAS TRANSACTIONS on COMPUTERS Luo Yan

E-ISSN: 2224-2872 242 Issue 6, Volume 12, June 2013

