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Abstract: - The development of Open Source Software (OSS) projects is a process of collective innovation in 
the environment of online community. The paper addresses the challenge of efficiently mining data from OSS 
web repositories and building models to study OSS community features. Data collection for OSS community 
study is nontrivial since most OSS projects are developed by distributed developers using web tools. We design 
a mining process which combines web mining and database mining together to identify, extract, filter and 
analyze data. We address and analyze the difficulty of mining OSS community data. Our work provides a 
general solution for researchers to implement advanced techniques, such as web mining, data mining, statistics, 
and algorithms to collect and analyze online community data. 
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1 Introduction 
Online communities can be defined as a social 
relationship aggregation, facilitated by Internet-
based technology, in which users communicate and 
build personal relationships [1]. They allow the 
creation of weak links among geographically 
dispersed individual who regularly participates in 
the community. Examples of online communities 
can be found on fields like education [2] and [3], 
software development [4] or consumer behavior [5].  

Most OSS projects are developed in a distributed 
and decentralized environment. The number of 
developers of OSS projects ranges from several to 
thousands of people, who are usually not physically 
located in the same place. They rarely meet face to 
face. For example, the Linux development team 
consists of more than 3, 000 developers from over 
90 countries [6]. The development of OSS projects 
relies on the online communities, which are built on 
relationships among members, being their final 
objective sharing knowledge and improving the 
underlying project. 

OSS communities contain abundant information 
about projects and their developers. Although these 
OSS communities can be treated as attractive data 
sources for researchers, difficulties exist in 
collecting data. They may not have access to the 
backend databases, in which case, tools are needed 
to extract, download, parse, and port web data. The 

researchers must eliminate irrelevant or unnecessary 
items in the extracted data. Furthermore, 
overlapping data or incomplete data also exists. 
Some users may use multiple IDs or an ID may be 
used by multiple users. The researchers also need to 
deal with missing and dirty data. For example, 
dumped and defunct projects must be distinguished 
from normal projects [7]. It is imperative for 
researchers to improve data quality and accuracy. 

There are two ways to collect data from OSS 
communities. In most studies, the collecting process 
is based on retrieving web pages or files (usually by 
a web crawler), parsing the downloaded pages, and 
analyzing data for different research goals. Robles et 
al. [8] design a data collecting system, GlueTheos, 
which includes modules to download raw data from 
CVS repositories, analyze the source code and store 
data as XML files or in a SQL database. Some 
researchers focus on gathering, sharing, and storing 
OSS development data for academic research [9, 10]. 
These systems use a crawler to collect OSS project 
and developer information from OSS communities 
and provide ready-to-use databases for researchers. 
Jensen et al. [11] explore mining techniques for 
discovering OSS development processes by 
analyzing text, links, usage, and update patterns 
from OSS communities. Crob et al. [12] discuss 
selecting and extracting OSS communities’ server 
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log files and use data mining techniques to analyze 
those log files.  

Collecting data by web crawling has several 
disadvantages in the process of mining OSS 
communities. First, a web crawler can hardly be 
used for different OSS communities’ web sites 
because those sites have different web structures or 
a site may change its structure. Second, because 
crawling is always time- and resource- consuming, 
downloading data by a web crawler may affect the 
performance of the downloaded site and may result 
in a denial of service for regular users. Third, 
historic data are often unavailable to web crawlers 
because an OSS community’s web site usually only 
contains current information. The other way to 
collect data is to get a copy of a backend database 
dump directly from the OSS communities’ web sites. 
Although direct access to the data dump can avoid 
those disadvantages of web crawling or spidering, 
this approach still poses several problems. The lack 
of documentation about data dumps may require a 
huge effort to understand schemas and tables. 
Unlike data listed directly on web pages, names and 
meaning of table fields may be confusing and 
obscured and the interpretation may not be easy. 
Moreover, data processing and cleaning are 
complicated due to the fact that there are noisier and 
duplicated data stored in databases. 

This paper addresses the challenge of efficiently 
mining data from OSS communities. Most previous 
studies focus on manually creating a web crawler to 
collect data from OSS communities’ web sites based 
on specific research needs. We design a mining 
process which combines web mining and database 
mining to identify, extract, filter and analyze data. 
Furthermore, OSS communities’ database schemas 
and tables are described to help researchers 
understand data dump structures. Our work provides 
a general solution for researchers to implement 
advanced techniques, such as web mining, data 
mining, statistics, and algorithms to collect and 
analyze OSS communities’ repository data. 

The rest of this chapter is organized as follows: 
Section 2 describes OSS communities’ data sources 
and data features. Section 3 presents our mining 
process and gives an example of using a web 
crawler to collect data. Section 4 focuses on design 
and implementation of data collection from OSS 
community. Conclusions and future work are given 
in Section 5. 
 
 

2 Data Sources 
We collect our data from SourceForge - the world's 
largest Open Source software development and 
collaboration community. With over 324, 000 
projects and over 3.4 million registered users as of 
March 2013, SourceForge.net, sponsored by VA 
Software, offers a centralized place for OSS 
developers to control and manage OSS development 
by providing project web servers, trackers, mailing 
lists, discussion boards, and software releases, etc. 
Users can download and use those projects for free 
under an Open Source license. This community 
provides highly detailed information about projects 
and developers, including project characteristics, 
developers' activities, and “top ranked” developers. 
By mining this OSS community, we can explore 
developers' behaviors and projects' growth. 
 
 
2.1 Project Information 
SourceForge provides a summary for each project, 
including its name, registered data, classification, 
list of developers, and activity data. According to 
the features and properties of a project, SourceForge 
groups each project into different categories, called 
a software map. Those categories have multi-level 
subcategories. A project can be classified into 
different subcategories in the same top category. 
The top level category includes database 
environment, development status (planning, pre-
alpha, alpha, beta, production/stable, mature, 
inactive), intended audience, license, operating 
system, programming Language, topic, translations 
(natural language the project is based on), and user 
interface. Fig.1 shows the first level subcategories 
of SourceForge projects topics. 
 

 
Fig.1. SourceForge topics hierarchy. This graph 
only shows the first level of the topics hierarchy 
tree. 
 

The tracker system is a tool provided by 
SourceForge.net that allows developers to develop, 
collaborate, and support software. By using trackers, 
developers and users can report and manage bug 
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reports, patch submissions, support requests, feature 
requests. Each project may have multiple trackers. 
Each tracker keeps total and open counts, summary 
of a request, open date, update date, current status 
(open, close), submitter ID, and assignee ID. 

Some projects may maintain forums for different 
types of purposes. Forums provide a convenient 
communication for developers and users to raise, 
discuss, and answer questions. SourceForge records 
each message, as well as its topic starter, total 
replies, and follow-ups. 

For each project, you can find historical data of 
its activities, such as its rank, total page views, total 
downloads, and posts on forums. The history of file 
releases is also available, which provides 
information about the file release time, version, size, 
and package names. 
 
2.2 Member and User Information 
A project has a list of administrators and developers. 
They are registered members of SourceForge. Each 
project has one or multiple project administrators, 
who are often the initiators of that project. These 
project administrators usually control the source 
code change and maintain project membership. 
Besides project administrators, each project may 
have developers who work on that project but have 
no control privileges. These developers must be 
registered users on SourceForge and granted 
membership by project administrators. Because both 
project administrators and developers are registered 
members, SourceForge keeps records of their user 
IDs, user names, real names, contact information, 
and projects they participate on. 

There are a large number of registered users on 
SourceForge who do not belong to any projects. 
These users may or may not have activities on some 
projects. We can track their information by checking 
a project's trackers and forums. 

However, SourceForge is also visited by a large 
number of other unregistered end-users, who may 
download software, report bugs, and post messages 
on forums. Since they are not registered members of 
SourceForge, we have no way to know their 
quantities and identifications although they may be 
very important for the development of a project. 
 
2.3 Data Limitation 
Although we can get abundant data from OSS 
community hosting web sites, the actual data 
collection process has been proven to be challenging. 
An OSS community web site can be accessed by 

millions of developers and users. Each person has 
her own natural language, input format, and other 
preferences. Moreover, some developers decide to 
move their project to an OSS community after the 
project is developed for some time, while some 
developers may decide to stop the development of 
their project or move it out of an OSS community 
and build their own project site. All these actions 
taken by developers or users can lead to difficulties 
in the data collection process. In summary, data 
collected from OSS communities may include the 
following dirty or noisy data: 

1. Missing data: Data collected may be 
incomplete. For example, since SourceForge started 
in November 1999, for those projects which started 
earlier, we could not get their history data earlier 
than that date. 

2. Outliers: Abnormal values may be contained 
in the collected data. Some projects are dumped into 
SourceForge. These projects should be identified 
because they will cause inaccuracy in research 
studies if we treat them the same way as other 
projects. 

3. Anonymous data: Some data may have no 
identification which poses difficulty in analyzing 
them. For example, users are allowed to use a user 
ID called “nobody” to post messages on 
SourceForge. We have no way to know how many 
different users are behind those “nobody” activities. 
When we include this data in data analysis, the way 
we treat it (delete all “nobody”, treat each one as a 
different individual, or treat all as one individual) 
will lead to huge difference in results. 
 
 

3 Data mining 
 
 
3.1 Mining Process 
In order to explore the OSS community data, we 
need to identify, extract, filter and analyze data 
resources. Our OSS community mining process 
combines web retrieval, statistics, and data mining 
techniques together to provide information for our 
research. The mining process, as shown in Fig 2, 
consists of four phases: identification and extraction, 
cleansing and preprocessing, analysis, and report. 

The first phase is to select appropriate content 
from the data sources. The OSS community data 
sources may be web sites or data dumps. Usually, a 
web site contains many web pages, such as 
documentation, newsgroups, forums, mailing lists, 
etc. A data dump stores a large number of tables. 
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Either web pages or database tables include relevant 
and irrelevant information to our research purpose. 
This phase decides which web pages or database 
tables should be extracted. Different tools and 
techniques will be used depending on the data 
source. If data is extracted from a web site, a 
crawler/spider will be used to automatically extract 
specific fragments of a web document. Extracted 
data from a data dump requires interpretation and 
exploration of database tables. Database 
management and connection tools, i.e. SQL and 
JDBC, are used in our data collection from data 
dumps. 

 

 
Fig.2. Mining process. Data are extracted from 
web pages or data dumps and stored into back-
end database; raw data in the database are 
cleaned and preprocessed for later statistics, 
mathematics or data mining analysis; scientific 
report is based on data analysis. 
 

The second phase converts the raw data into 
cleaned data abstractions necessary for analysis. The 
purpose of data cleansing and preprocessing is to 
improve data quality and increase mining accuracy. 
The main tasks of data cleansing consist of handling 
missing values, identifying outliers, filtering out 
noisy data and correcting inconsistent data. Data 
cleansing eliminates irrelevant or unnecessary items 
in the analyzed data. A web site can be accessed by 
millions of users. Different users may use different 

format when creating data. Furthermore, 
overlapping data and incomplete data also exist. By 
Data cleansing, errors and inconsistencies will be 
detected and removed to improve the quality of data. 
Data preprocessing converts data to a format 
suitable for later analysis, which may include 
integrating data from multiple sources into a 
coherent store; scaling values of data to a range; 
reducing a huge data set to a smaller representative 
subset. 

In the analysis phase, advanced techniques are 
utilized to discover patterns. Statistics can be 
applied to calculate measures such as totals and 
means, etc. Data mining functions can be performed 
to find dependencies and relationships. Simulation 
models can be built to predict future development. 
This phase gives analytical data which needs further 
interpretation. 

The report phase includes interpreting and 
validating the potential information from patterns 
offered by analysis. The objective of this task is to 
gain knowledge from the information provided by 
former tasks. According to their knowledge and 
experience, different researchers may get different 
or even opposite explanations for the same 
analytical data. 

 
3.2 OSS Community Mining 
In the first stage of our OSS community study, web 
mining is our main method used to collect data. 
Because web data are semi-structured or even 
unstructured, which cannot be manipulated by 
traditional database techniques, it is imperative to 
extract web data to port them into databases for 
further handling. The purpose of our OSS 
community mining is to extract a specific portion of 
web documents useful for a research objective. Our 
mining process takes web documents as input, 
identifies a core fragment, and transforms that 
fragment into a structured and unambiguous format 
[13]. 
 
3.2.1 Web Crawler Implementation 
In OSS community mining, a web crawler is 
developed to help extract useful information from 
OSS community resources. A web crawler is a 
program which automatically traverses web sites, 
downloads documents and follows links to other 
pages [14]. It keeps a copy of all visited pages for 
later use. Most web search engines use web crawlers 
to create entries for indexing. They can also be used 
in other possible applications such as page 
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validation, structural analysis and visualization, 
update notification, mirroring and personal web 
assistants/agents etc. [15]. 

We designed a web crawler shown in Fig.3, 
which is implemented using Perl because Perl 
provides useful modules to help web retrieval such 
as HTTP communication, HTML parsing, etc. A 
crawler can also be implemented in Java, Ruby, and 
Python, etc. 

 

 
Fig.3. A web crawler. The crawler starts with a 
URL, identifies other links on the HTML page, 
visits those existing links, extracts and parses 
web pages. The parser includes a word extractor, 
a table extractor and a link extractor. 

 
Our crawler starts with a URL, identifies other 

links on the HTML page, and visits those links, 
extracts information from web pages and stores 
information into databases. Thus, the crawler 
consists of a URL access method, a web page parser 
with some extractors, and a back-end database. The 
access function of a crawler should prevent 
repeatedly accessing the same web address and 
should identify dead links. The parser recognizes 
start tags, end tags, text and comments. The 
database provides storage for extracted web 
information. 

The key component of our web crawler is the 
parser, which includes a word extractor, a table 
extractor and a link extractor. The word extractor is 
used to extract word information. It should provide 
a string checking function. Tables are used 
commonly in web pages to visually align 
information. A table extractor identifies the location 
of the data in a table. A link extractor retrieves links 
contained in a web page. There are two types of 
links- absolute links and relative links. An absolute 
link gives the full address of a web page, while a 

relative link needs to be converted to a full address 
by adding a prefix. 

The code of web crawler as follows: 
 
#!/usr/local/bin/perl 
use lib qw( ..); 
use lib "/afs/nd.edu/user9/jxu1/research/webmining/jin/\ 
lib/HTML-TableExtract-1.08/lib"; 
use HTML::TableExtract; 
use LWP::Simple; 
use Data::Dumper; 
my $str = "http://sourceforge.net/project/stats/?group_id="; 

 
for (my $s = @ARGV[0]; $s <= @ARGV[1]; $s++){ 

$file = "result".$s."k.txt"; 
$m = ">>".$file; 
print $m . "\n"; 

my $lo = $s."000"; 
my $hi = $s."999"; 
for (my $i = $lo; $i <= $hi; $i++){ 

print $i. "\n"; 
my $te = new HTML::TableExtract( depth=>1, count=>3, 
gridmap=>0); 
$url = $str . $i; 
#print $url . "\n"; 

#my $content = system ("wget". "-o " " .$url); 
my $content = get($url); 
my $random = int (rand 3); 
my $cmd = "sleep ".$random; 
print "before ".$cmd . "\n"; 
system($cmd); 
print "end\n"; 
if(defined $content){ 

#print $content; 
} 
else { 

# print "Error: Get failed"; 
} 
#print ("content". "\n"); 
$te->parse($content); 
#print ("parse" . "\n"); 
foreach my $ts ($te->table_states) 
{ 

foreach $row ($ts->rows) 
{ 

open (outfile, $m ); 
print outfile $i; 
print outfile "|"; 
@a = @$row; 
$length = @a; 
if ($a[0] !~ /Lifespan/){ 
for (my $j = 0; $j < @a; $j++){ 
#print $a[$j]; 
print outfile $a[$j]; 
print outfile "|"; 

} 
print outfile "\n"; 

} 
close (outfile); 
} 

} 
} 
} 
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All project home pages in SourceForge have a 
similar top-level design. Many of these pages are 
dynamically generated from a database. The web 
crawler uses LWP, the libwww-Perl library, to fetch 
each project's homepage. CPAN has a generic 
HTML parser to recognize start tags, end tags, text 
and comments, etc. Because both statistical and 
member information are stored in tables, the web 
crawler uses an existing Perl Module called 
HTML::Table Extract and string comparisons 
provided by Perl to extract information. Link 
extractors are used if there is more than one page of 
members.  

 
3.2.2 Web Raw Data Collection 
After informing SourceForge of our plans and 
receiving permission, we gathered data monthly at 
SourceForge. Data is collected at the community, 
project, and developer level, characterizing the 
entire OSS phenomenon, across multiple numbers 
of projects, investigating behaviors and mechanisms 
at work at the project and developer levels. The 
primary data required for this research are stored in 
two tables- developers and project statistics. The 

developers table, shown in Table 1, has 2 fields: 
project ID and developer ID. The project statistics 
table, shown in Table 2, consists of records with 9 
fields: project ID, lifespan, rank, page views, 
downloads, bugs, support, patches and CVS. 
Because projects can have many developers and 
developers can be on many projects, neither field is 
a unique primary key. Thus the composite key 
composed of both attributes serves as a primary key. 
Each project in SourceForge is given a unique ID 
when registered with SourceForge. 
 
Table 1. MEMBERSHIP FOR EACH PROJECT 

Project ID Login ID 

1 agarza 

1 alurkar 

1 burley 

1 chorizo 

2 atmoshere 

2 burley 

2 bdsabian 

 
Table 2. PROJECT STATISTICS 

Project ID lifespan rank Page views downloads bugs support patches All trackers tasks cvs 

1 1355 days 31 12,163,712 71,478 4,160 46,811 277 52,732 44 0 

2 1355 days 226 4,399,238 662,961 0 53 0 62 0 14,979

3 1355 days 301 1,656,020 1,064,236 364 35 15 421 0 12,236

7 1355 days 3322 50,257 20,091 0 0 0 12 0 0 

8 1355 days 2849 6,541,480 0 17 1 1 26 0 13,896

 
 

4 Data analysis 
We use several data mining algorithms to analyze 
the web raw data we retrieved from SourceForge by 
the crawler. Among them, we use Naive Bayes, 
Classification and Regression Tree (CART) for 
classification, A Priori for association rules mining, 
K-means and Orthogonal-Cluster for clustering. 

 
4.1 Classification 
The Naive Bayes algorithm makes predictions using 
Bayes' Theorem. Naïve Bayes assumes that each 
attribute is independent of others, which is not the 
case in our study. For example, the “downloads” 
feature is closely related to the “cvs” feature; the 
“rank" feature is closely related to other features, 
since it is calculated from other features. 

CART builds classification and regression trees 
for predicting continuous dependent variables 
(regression) and categorical predictor variables 
(classification). We are only interested in the 
classification type of problems since the software 
we are using only handles this type of problems. 
Oracle's implementation of CART is called 
Adaptive Bayes Network (ABN). ABN predicts 
binary and multi-class targets. Thus discretizing the 
target attribute is desirable. 

Classification includes the following steps: build 
models, test models, compute lift, and apply models. 
The table “projects_build_binned” which stores the 
transformed data, contains 65,000 records. We 
randomly partition the table into three parts based 
on the 6:3:1 criteria. Each part is for building, 
testing and computing lift respectively. We call 

WSEAS TRANSACTIONS on COMPUTERS Luo Yan

E-ISSN: 2224-2872 238 Issue 6, Volume 12, June 2013



 

 

these parts model-build-data, model-test-data and 
lift-compute-data. 

In our case, we try to predict “downloads” from 
other features. As stated previously, the 
“downloads” feature is binned into ten equal 
buckets. We predict which buckets “downloads” 
resides based on the values of other features. As 
expected, the Naive Bayes algorithm is not suitable 
for predicting “downloads”, since it is related to 
other features, such as “cvs”. Fig.3. shows that the 
accuracy of Naive Bayes is less than 10%. 
 

 
Fig.3. Naive Bayes prediction for downloads. The 
“downloads” is predicted based on other project's 
statistics. Rows contain actual data. Columns 
contain predicted data. The accuracy of Naive Bayes 
is less than 10%. 
 

While Naive Bayes performs badly on predicting 
“downloads”, the ABN algorithms can predict 
“downloads" quite accurately. As shown in Fig.4, 
the accuracy is about 63%. At first sight, the 
accuracy 63% is not attractive, but it is a good 
prediction since we could only get 10% of correct 
predictions without classification. The lift 
computation confirms that the resulting 
classification model is quite good, as shown in Fig.5. 
These figures show that all records whose 
“downloads" feature is 1 in just the first 20% of 
records. Fig.6. shows the rules built by the ABN 
classification model. As we see from the figure, 
“downloads" is closely related to “cvs". 

We conclude that the ABN algorithm is suitable 
for predicting “downloads" in our study. The 
following table compares the two algorithms, 
namely, ABN and Naive Bayes. From the Table 3, 
we see that ABN takes much longer time to build a 
classification model, but the resulting model is 
much more accurate. 

 
Fig.4. ABN prediction for downloads. The 
“download" is predicted based on other project's 
statistics. Rows contain actual data. Columns 
contain predicted data. The accuracy of ABN is 
63%. 
 

 
Fig.5. The Lift chart for ABN prediction. By using 
ABN algorithm, the cumulative target of 
“downloads" is 1 in just the first 20% of records, 
which indicates the prediction is accurate. 
 

 
Fig.6. The rules built by ABN classification. The 
rule computation contains if-condition field and 
classification field. “Downloads” is closely related 
to “cvs”. 
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Table 3. COMPARISON OF ABN AND NAIVE 
BAYES. 

Name Build Time accuracy 

ABN 0:19:56 63% 

Naive Bayes 0:0:30 9% 

 
4.2 Association Rules 
Association rule algorithm is applied to find the 
correlations between features of projects in OSS 
community. The association rules mining problem 
can be decomposed into two subproblems: 

1.Find all combinations of items, called frequent 
itemsets, whose support is greater than the minimum 
support. 

2.Use the frequent itemsets to generate the 
association rules. For example, if AB and A are 
frequent itemsets, then the rule A→B holds if the 
ratio of support(AB) to support(A) is greater than 
the minimum confidence. 

One well known association rule mining 
algorithm is called A Priori. Oracle implements this 
algorithm using PL/SQL. We use the algorithm to 
find correlations between features of projects. The 
algorithm takes two input data- the minimum 
support and the minimum confidence. We choose 
0.01 for minimum support and 0.5 for minimum 
confidence. Fig.7. shows the results of the 
association rules mining. From the figure, we see 
that the feature “all_trks", “cvs" and “downloads" 
are “associated". More rules can be seen from the 
above figure. Not all of the rules discovered are of 
interest. 

 

 
Fig.7. The rules built by A Priori. Features 
“all_trks”, “cvs” and “downloads” are “associated” 
because the confidence and support are greater than 
their thresholds. 

 
4.3 Clustering 
Clustering is a data analysis which is used to find a 
collection of similar patterns [16]. We wish to put 
projects with similar features together to form 
clusters. Two algorithms can be used to accomplish 
this: k-means and o-cluster. 

The k-means algorithm is a distance-based 
clustering algorithm, which partitions the data into 
predefined number of clusters. The o-cluster 
algorithm is a hierarchical and grid-based algorithm. 
The resulting clusters define dense areas in the 
attribute space. The dimension of the attribute space 
is the number of attributes involved in the clustering 
algorithm. We apply the two clustering algorithms 
to projects in this case study. Fig.9 and Fig.10 show 
the resulting clusters and rules that define the 
clusters. 
 

 
Fig.8. The clusters. There are total of 50, 000 
projects. They are divided into 5 groups, each of 
which contains subgroups. For example, cluster 6, 
which contains 8534 projects, can be divided into 
group 18 and group 19. 
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Fig.9. The rules that define clusters. Statistical 
features of a project are divided into 10 categories. 
Clusters are formed according to categories in each 
statistical feature. 
 
 

5 Conclusion 
The success of Open Source Software (OSS) has 
attracted increased interest in many research areas. 
Unlike proprietary closed software, OSS projects 
are developed in a distributed and decentralized way. 
The OSS community is largely composed of part-
time developers. These developers have developed a 
substantial number of outstanding technical 
achievements. 

In this paper, we address the challenge of 
efficiently mining data from OSS web repositories 
and building models to study OSS community 
features. Data collection for OSS community study 
is nontrivial since most OSS projects are developed 
by distributed developers using web tools. Most 
previous studies focus on manually creating a web 
crawler to collect data from OSS community. This 
method is usually implemented by creating a web 
crawler based on specific research goals. We design 
a mining process which combines web mining and 
database mining together to identify, extract, filter 
and analyze data. We address and analyze the 
difficulty of mining OSS community data. Our work 
provides a general solution for researchers to 
implement advanced techniques, such as web 
mining, data mining, statistics, and algorithms to 
collect and analyze online community data. 
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